Correlation

Contents

Correlation

- Methods of studying correlation
- Types of correlation
- Spurious Correlation
- Factors affecting Correlation Coefficient
- Data Analysis

Correlation

Statistical technique for measuring the relationship between variables

If the quantities(X,Y) vary in such a way that change in one variable corresponds to change in the other variable then the variables X and Y are correlated

Methods of Studying Correlation

Scatter diagram method

Karl Pearson's Correlation Coefficient

Spearman's Rank Correlation Coefficient

Scatter Plot

- Graph that is used to plot the data points for two variables
- X axis --Independent variables
- Y axis -- Dependent Variables
- Idea about the kind of relationship between the two variables

Types of Correlation

Positive Correlation Negative Correlation Strong Correlation Weak correlation Zero correlation

Positive correlation

- ★X ↑, Y ↑ (increase) or X ↓, Y ↓ (decrease)
 Examples
- Family income and family expenditure
- The more time you spend running on a treadmill, the more calories you will burn
- Smoking and lung diseases
- Rainfall and yield of rice
- Training and performance

- Demand and Price of a commodity
- Length of candle and no of hours burned
- Vaccination and illness
- School achievement and days absent from school

Zero Correlation

When one factor increases/decreases we have no idea what other would be

Examples Height of a person and income received

Correlation Coefficient

defined as a numerical representation of the strength and direction of a relationship.

Represented by "r" and unitfree

♦ -1 <= r <= +1

The closer to o, the weaker linear relationship

- No relationship if exactly equal to o
- The closer to –1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- Exactly equal to +1 or -1 is perfect relationship

Three Sets of Data Showing Different Directions and Degrees of Correlation

(A) r = +1.00		(B) r = -1.00		(C) <i>r</i> = 0	
х	Y	х	Y	х	Y
5	5	5	1	2	1
4	4	4	2	5	4
3	3	3	3	3	3
2	2	2	4	1	5
1	1	1	5	4	2

Interpreting Corr. Coefficient, r

Value of Corr. Coefficient	Strength of Corr.
r equals +or- 1	Perfect
r > .70 or r < - .70	Strong
r is between .30 & .70 or r is between 30 and 70	Moderate
r is between o and .30 or r is between o and 30	Weak
Equal to o	No correlation

Correlation Coefficient Shows Strength & Direction of Correlation

Perfect Correlation

Strong positive correlation

r=0.95

Strong negative correlation r=-0.85

moderate positive correlation r=0.5

moderate negative correlation r=-0.75

Weak Positive Correlation,

Weak negative correlation

Pearson's Correlation coefficient

 An agricultural research organisation tested a particular chemical fertiliser to try to find out whether an increase in the fertiliser used would lead to corresponding increase in food supply

$$r_{xy} = \frac{n\sum XY - \sum X\sum Y}{\sqrt{n\sum X^2 - (\sum X)^2} n\sum Y^2 - (\sum Y)^2}$$

n- sample sizeX- value of Independent variableY-value of dependent variable

Illustration

Sl.Nos	Fertiliser (X)	Bushels of Beans(Y)	XY	X ²	Y ²
1	2	4	8	4	16
2	1	3	3	1	9
3	3	4	12	9	16
4	2	3	6	4	9
5	4	6	24	16	36
6	5	5	25	25	25
7	3	5	15	9	25

Spearman's rank coefficient

- When the values of the two variables are converted to their **ranks**, and there from the correlation is obtained, the correlations known as rank correlation
- Example: Intelligence and Beauty

$$\Gamma = 1 - \left(\frac{6\Sigma d^2}{n(n^2 - 1)}\right)$$

n=No of observations D=difference between the ranks

Spurious Correlation

•A situation in which measures of two or more variables are statistically related (they cover) but are not in fact causally linked usually because the statistical relation is caused by a third variable.

Spurious Correlation

 correlation is not present in the original observations but is produced by the way the data are handled

• Example-

Correlation between Long Hair and test score

2. From economics is the Phillips curve

But US entered a period of Stagflation (hig h unemployment an *d* high inflation) caused by shocks to the oil supply and government wage/price controls (1070's)

Factors Affecting r Correlation

Heterogeneous subsamples

Truncation Foot Size 4 5 6 7 8 9 Age 3

Non-linearity

May be due to wrong measurement

Heart Disease and Smoking

An Example

- Does smoking cigarettes increase systolic blood pressure(Heart disease)?
 Data on heart disease and cigarette smoking in 21 developed countries (Landwehr and Watkins, 1987)
- Data have been rounded for computational convenience.
 - The results were not affected.

The Data

Surprisingly, the U.S. is the first country on the list--the country with the highest consumption and highest mortality.

Country	Cigarettes	CHD
1	11	26
2	9	21
3	9	24
4	9	21
5	8	19
6	8	13
7	8	19
8	6	11
9	6	23
10	5	15
11	5	13
12	5	4
13	5	18
14	5	12
15	5	3
16	4	11
17	4	15
18	4	6
19	3	13
20	3	4
21	3	14

What Does the Scatterplot Show?

- As smoking increases, so does coronary heart disease mortality.
 Fairly moderate relationship and
- Fairly moderate relationship and positive
- Not all data points on line.
 - This gives us "residuals" or "errors of prediction"

Thank You...